

Neonatal Airway Management

Nicola Disma, Prof. Director of Unit for Research in Anaesthesia IRCCS Ist. G. Gaslini, University of Genoa, Italy

20th ASPA Conference & 3rd Paediatric Anaesthesia Meeting of MSPA SAFE: Safe & Sustainable Anaesthesia for Every Child

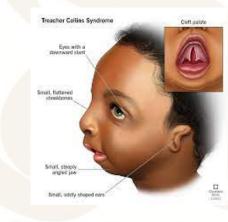
11 · 14 July 2024 Borneo Convention Centre, Kuching (BCCK)

REGISTER NOW

ES European Society of Anaesthesiology and Intensive Care

Airway Management Guidelines for Neonates and Infants

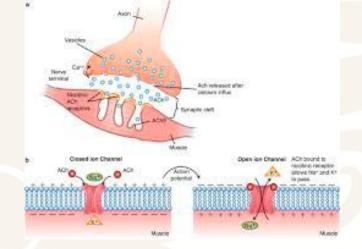
oi Plan	05 Video
	Laryngoscopy
Share your plan and ensure equipment & expertise are available	Videolaryngoscopy improves th first attempt success rate and c be used for teaching and feedb
02	06
Identify	Rescue
Anticipate difficult airway management through medical history and physicalexamination	Supraglottic airway devices sho be used as rescue for ventilation and oxygenation and for fibreop guided intubation
	07
03	Tracheostomy & ECMO
Oxygenate	Surgical tracheostomy and ECM
	should be considered if oxygenation and ventilation are
Provide peri-procedural oxygen: From pre-oxygenation to apnoeic oxygenation	severely impaired and spontane respiration cannot be restored
	08
04	Extubation
Anaesthetize	
and Paralyze	Planning for extubation is as important as for intubation
Provide adequate	A
anaesthesia/sedation for all children and paralysis if	09
spontaneous breathing is not required	Human Factors
	Identification of human factors


improves communication and

teamwork

PICO 1. Pre-operative airway assessment to predict difficulty

We <u>recommend</u> the use of medical history and physical examination to predict difficult airway management in neonates and infants. (1C)



PICO 2. Pharmacology

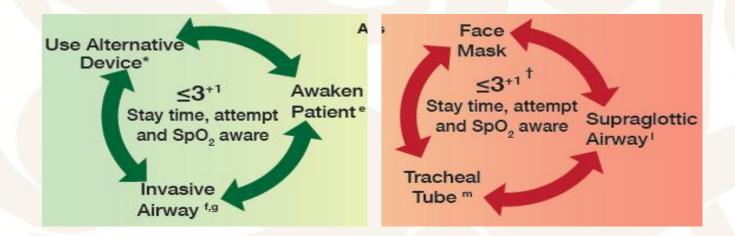
- We <u>recommend</u> adequate level of sedation or general anaesthesia in during airway management (1B).
- We <u>recommend</u> neuromuscular blockade prior to tracheal intubation, when spontaneous breathing is not necessary (1C).

PICO 3. Tracheal intubation

- R: We <u>recommend</u> video-laryngoscopy as first choice for tracheal intubation of neonates and infants (1B), including for tracheal intubation in the lateral position (1C)
- CPS: Video-laryngoscopy should also be used for teaching purposes using a "dual approach".

First-attempt success rate of video laryngoscopy in small infants (**VISI**). Lancet. 2020;396(10266):1905-1913.

Direct vs video laryngoscopy and supplemental oxygen for neonatal and infant intubation (**OPTIMISE**). Lancet Child Adolesc Health. 2023;7(2):101-111.


Apnoeic oxygenation

We <u>recommend</u> the use of apnoeic oxygenation during tracheal intubation in neonates (1B), and in older children when they are at risk of hypoxemia

PICO 4. Difficult intubation

• We <u>recommend</u> limiting the number of tracheal intubation attempts (3+1), by reassessing the clinical condition and by considering a change to a different technique and/or a different provider after every single attempt (1C).

PICO 5. Confirmation of tracheal intubation

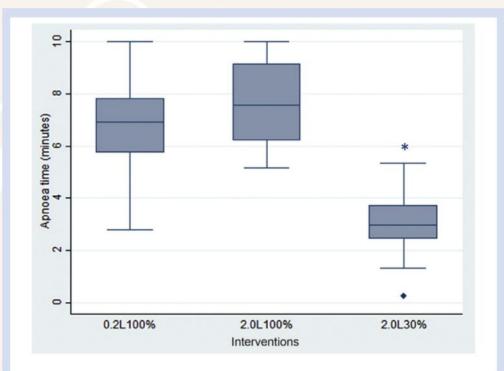
- We <u>recommend</u> the <u>immediate verification of successful intubation</u> with both clinical assessment and end-tidal carbon dioxide (EtCO₂).
- A "second look" with videolaryngoscopy in complex patients, if the above is not enough (1C)

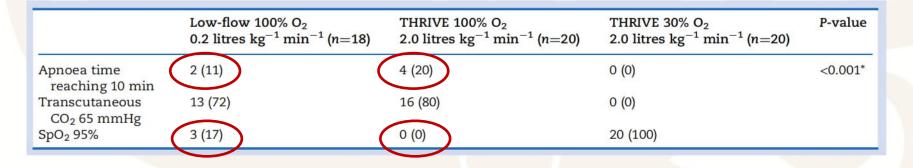
PICO 6. Strategies for extubation

We <u>suggest</u> to assess clinical signs to predict successful extubation.
 (2C). Equipment for re-intubation should be immediately available at extubation, and an extubation plan is in place

Road to Excellence

1. Apnoeic oxygenation

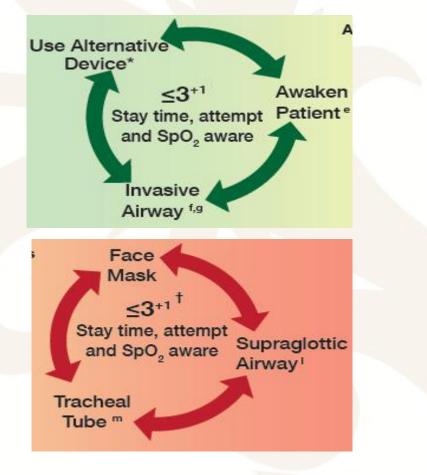

High-flow vs low-flow

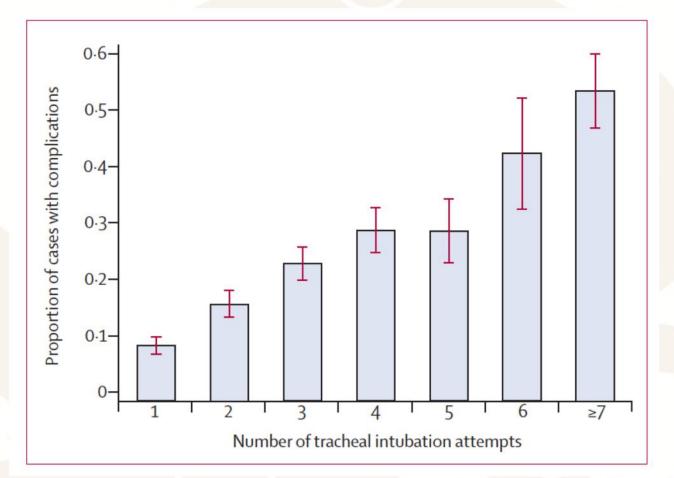

Transnasal humidified rapid insufflation ventilatory exchange for oxygenation of children during apnoea: a prospective randomised controlled trial

T. Riva^{1,#}, T. H. Pedersen^{1,*,#}, S. Seiler¹, N. Kasper¹, L. Theiler¹, R. Greif¹ and M. Kleine-Brueggeney^{1,2}

¹Department of Anaesthesiology & Pain Therapy, Bern University Hospital, Inselspital, Freiburgstrasse 8, 3010 Bern, Switzerland and ²Department of Anaesthesia, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK

1-6 years, 10-20kg




Apnoeic oxygenation during paediatric tracheal intubation: a systematic review and meta-analysis

Alexander Fuchs^{1,2,*,†}, Gabriela Koepp^{1,†}, Markus Huber¹, Jonas Aebli¹, Arash Afshari³, Rachele Bonfiglio², Robert Greif^{4,5}, Andrea C. Lusardi², Carolina S. Romero⁶, Marc von Gernler⁷, Nicola Disma^{2,‡} and Thomas Riva^{1,‡}

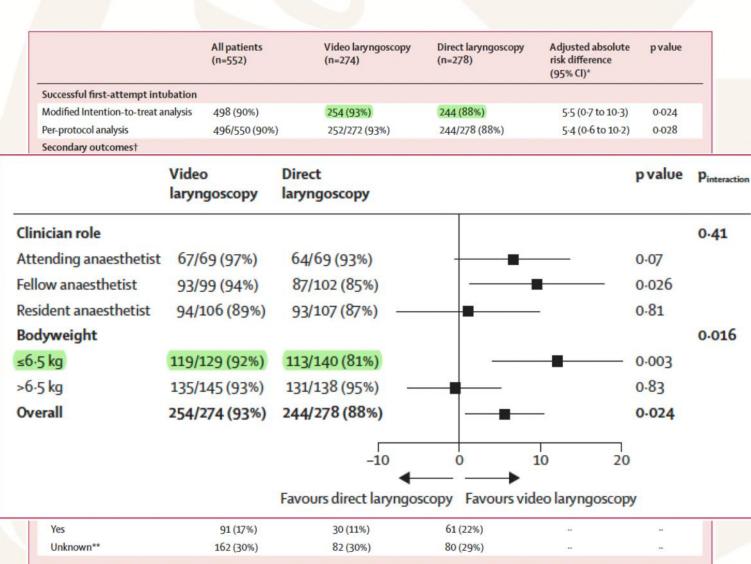
ß	Outcome	0.1	- RISK	RATIO AN 0.5	ND 95% CI –	5
15 studies included	First pass success rate of tracheal intubation (3 studies)					
 10 randomised 4 pre-post studies 	Incidence of hypoxia (3 studies)	-				
1 prospective observational	Incidence of bradycardia (2 studies)			•	-	
\mathbf{X}		_	- MEAN D	IFFERENC	E AND 95% C	
8 randomised trials		-40	-20	0	20	40
included in meta-analysis	Number of tracheal intubation attempts (3 studies)			-		
	Lowest oxygen saturation (%) (5 studies)			-	-	
Т́Т́Т́	Time (seconds) to successful first intubation (6 studies)			-		
9,802 paediatric patients	Apnoea time (seconds) (2 studies)	#			•	#
(age<16 years) requiring tracheal intubation			HER WITH APNOEIC YGENATION		HIGHER V APNO OXYGENAT	OEIC >

2. Limit the number of attempts

Lancet Respir Med 2016; 4: 37–48

Perseverance is not always your friend

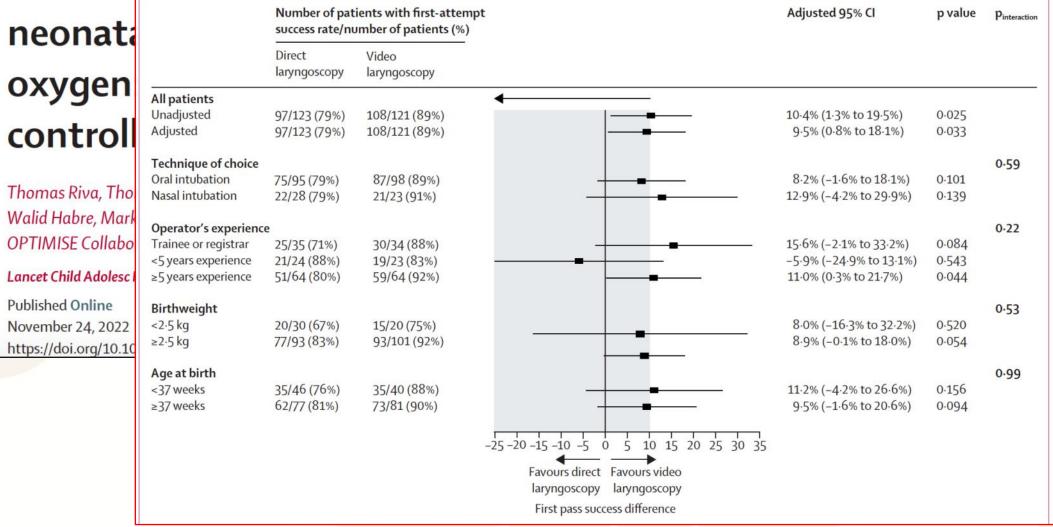
3. VL vs DL



Vs

First-atte
infants (\

Annery G Garcia-Mar Adolfo Gonzalez, Siri I Heather Griffis, Akira Collaborative investig

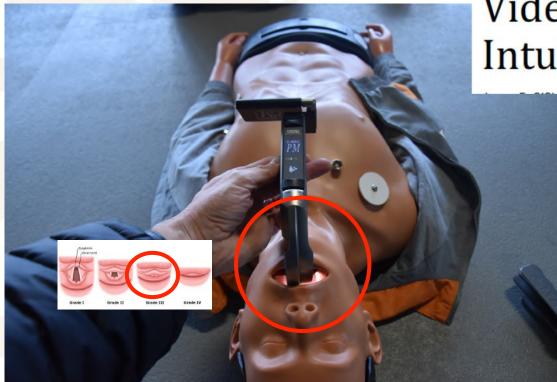

n small ed trial

r Sathyamoorthy, d Sommerfield, ?, on behalf of the PeDI

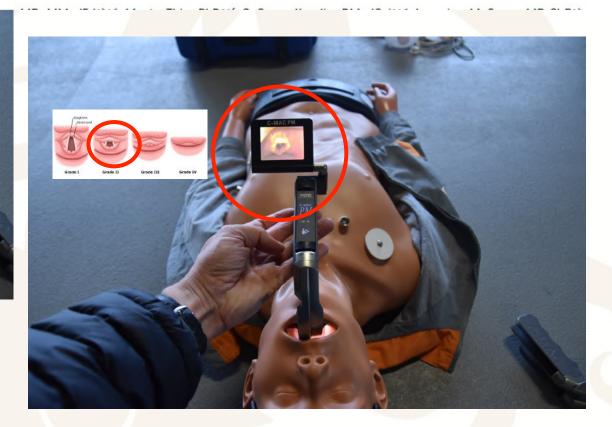
Data are n (%) or n/N (%), unless otherwise indicated. POGO=percentage of glottic opening. GEE=generalised estimating equation. *GEE models with exchangeable working correlation structures were used to adjust for clustering of patient outcomes within the same clinician and site. Imbalanced variables (ie, gestational age), stratification variables (ie, site identification and clinician role), and a priori variables (ie, American Society of Anesthesiologists physical status and weight group) were included as covariates in the model. †Secondary outcome results are exploratory. ‡Defined as lowest oxygen saturation less than 90%. Spefined as lowest oxygen saturation less than 90% but greater than 80%. ¶Defined as lowest oxygen saturation 80% or less. **Unknown values for cricoid or laryngeal pressure use were not included in the adjusted GEE model.

Table 2: Primary and secondary outcomes by assigned treatment groups

Direct versus video larvngoscopy with standard blades for

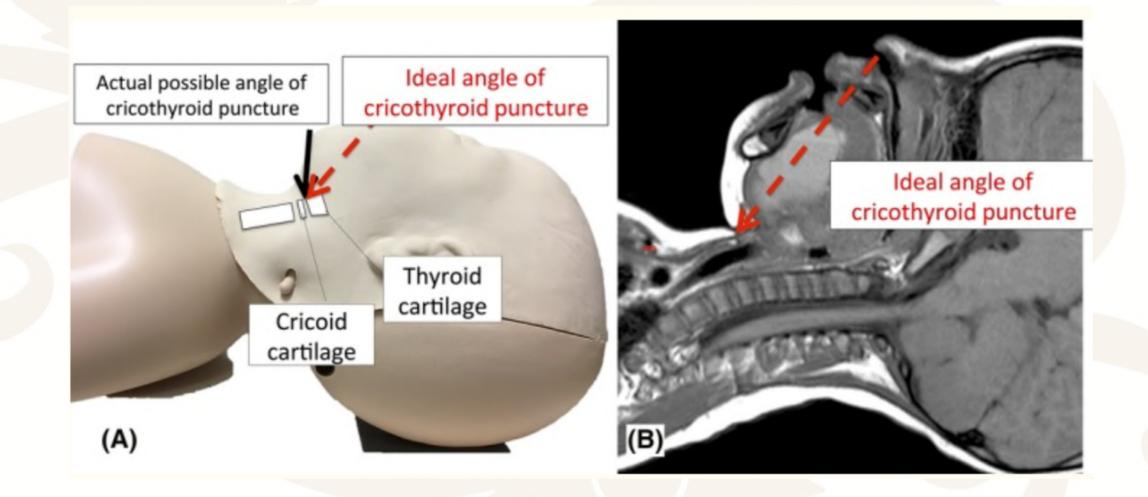

Video versus Direct Laryngoscopy for Urgent Intubation of Newborn Infants

Lucy E. Geraghty, M.B., Emma A. Dunne, M.B., Ph.D., Caitríona M. Ní Chathasaigh, M.B., Akke Vellinga, Ph.D., Niamh C. Adams, M.B., Eoin M. O'Currain, M.B., Ph.D., Lisa K. McCarthy, M.B., Ph.D., and Colm P.F. O'Donnell, M.B., Ph.D.

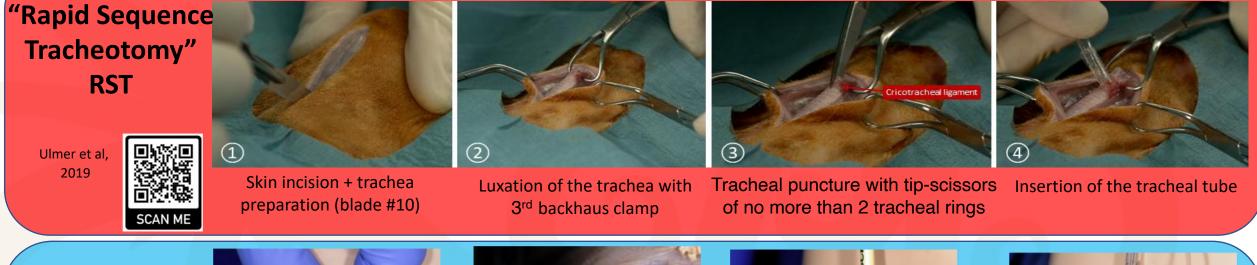

This article was published on May 5, 2024, at NEJM.org.

Outcome	Video-Laryngoscopy Group (N=107)	Direct-Laryngoscopy Group (N=107)
Primary outcome: successful intubation on first attempt (overall)		
No. of patients	79	48
Percentage of patients (95% CI)	74 (66–82)	45 (35–54)
P value for video laryngoscopy vs. direct laryngoscopy	<0.001	_
Outcome	Video-Laryngoscopy Group (N=107)	Direct-Laryngoscopy Group (N=107)
Oxygen saturation		
No. of patients assessed	98	100
	98 74 (65–78)	100 68 (62–74)
No. of patients assessed Median lowest oxygen saturation during procedure		
No. of patients assessed Median lowest oxygen saturation during procedure (95% CI) — %	74 (65–78)	68 (62–74)
No. of patients assessed Median lowest oxygen saturation during procedure (95% CI) — % <90% — % of patients*	74 (65–78) 74 (65–82)	68 (62–74) 90 (84–96)

3. Use technology for teaching



Videolaryngoscopy to Teach Neonatal Intubation: A Randomized Trial



4. CICO management

Methods

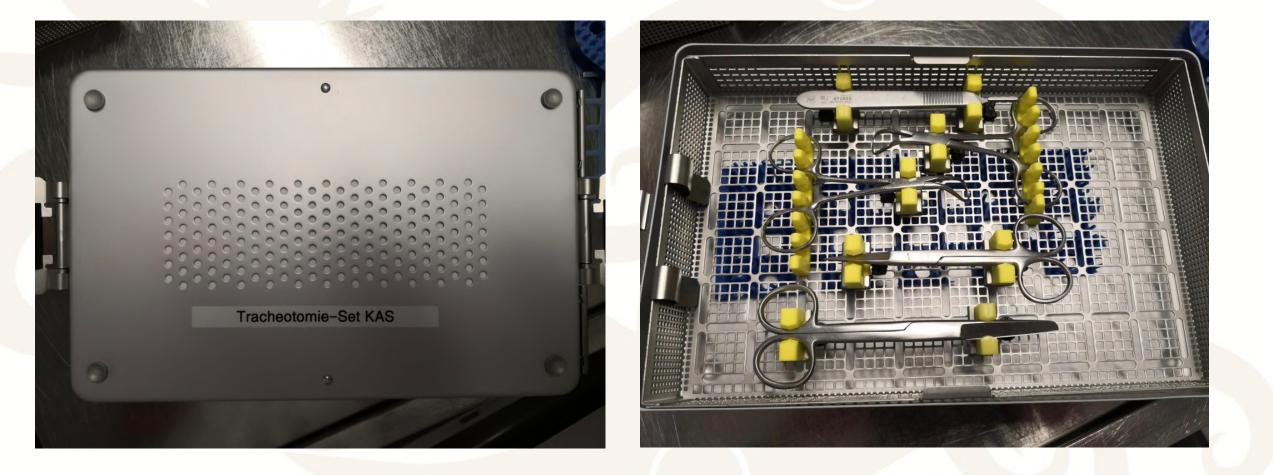
"Scalpel Bougie Tracheotomy" SBT

Skin incision + trachea preparation (blade #11)

Tracheal puncture with a scalpel (blade #11)

8 Fr Frova catheter is inserted

Insertion of the tracheal tube


CANNOT INTUBATE, CANNOT OXYGENATE (CICO)

- 2 vertical skin incision with 11-blade scalpel
- open the trachea (max 2 tracheal rings) with a longitudinal incision with the tip of the scalpel
- caudally
- the lunas
- in case of difficulties during tube placement, oxygenate through the Frova intubating introducer
- B confirm correct tube placement with EtCO2

Emergency tracheotomy set

Human factors and paediatric competencies

Medications

Neonatal tracheal intubation

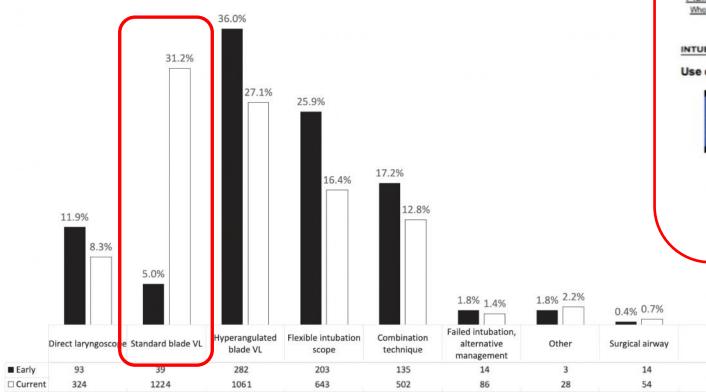
Oxygen

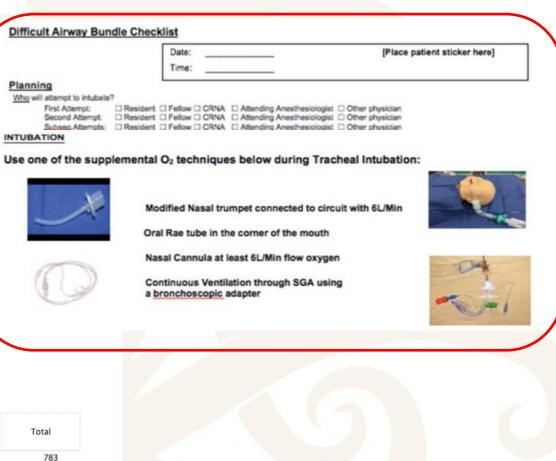
Patient's factors

Medications

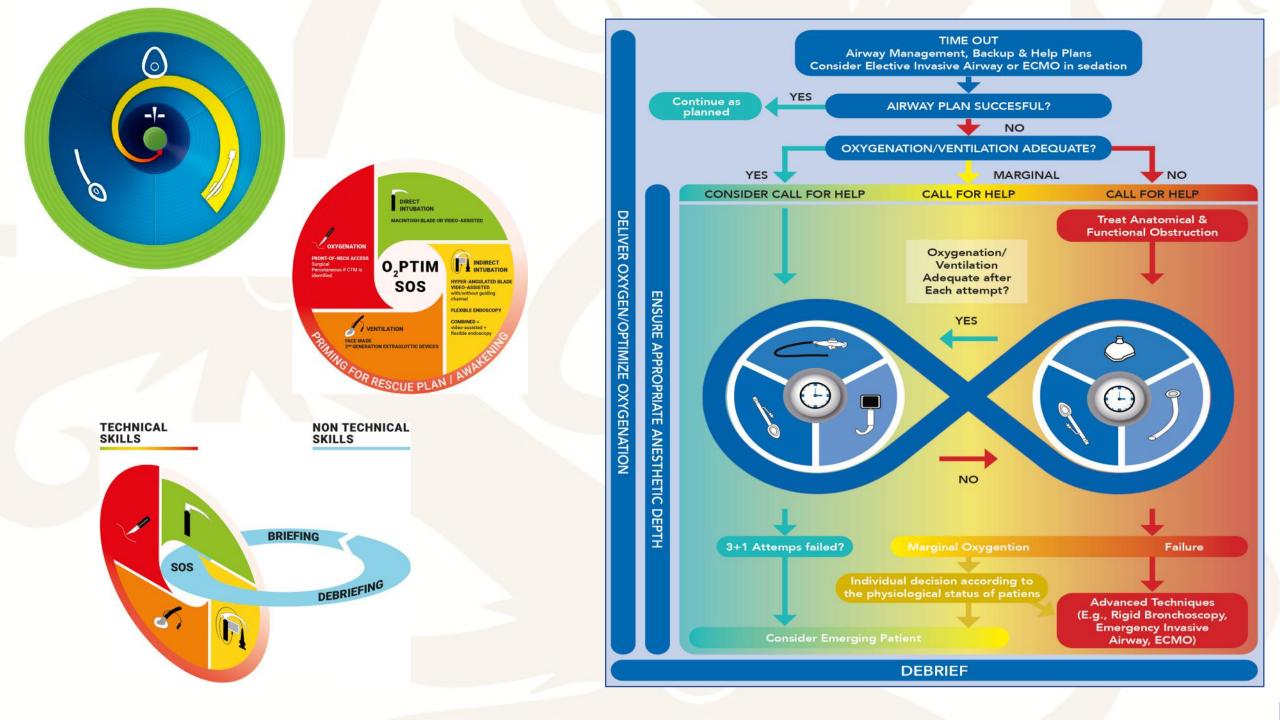
Human Factors

Neonatal airway management


ideolaryngoscopy


Patient's factors

Oxygen


Airway management in the paediatric difficult intubation registry: a propensity score matched analysis of outcomes over time

Mary Lyn Stein,^{a,*} Lina Andrea Sarmiento Argüello,^b Steven J. Staffa,^a Julia Heunis,^c Chinyere Egbuta,^a Stephen G. Flynn,^a Sabina A. Khan,^d Stefano Sabato,^e Brad M. Taicher,^f Franklin Chiao,^a Adrian Bosenberg,^h Angela C. Lee,ⁱ H. Daniel Adams,^j Britta S. von Ungern-Sternberg,^k Raymond S. Park,^a James M. Peyton,^a Patrick N. Olomu,¹ Agnes I. Hunyady,^h Annery Garcia-Marcinkiewicz,^m John E. Fiadjoe,^{a,n} and Pete G. Kovatsis,^{a,n} for the PeDI Collaborative Investigators

3922

ERROR TRAPS

Preparation Error

- Inadequate planning
- Communication

Performance Error

- Unnecessary attempts
- Relying on direct laryngoscopy
- Inadequate anesthetic depth

Proficiency Error

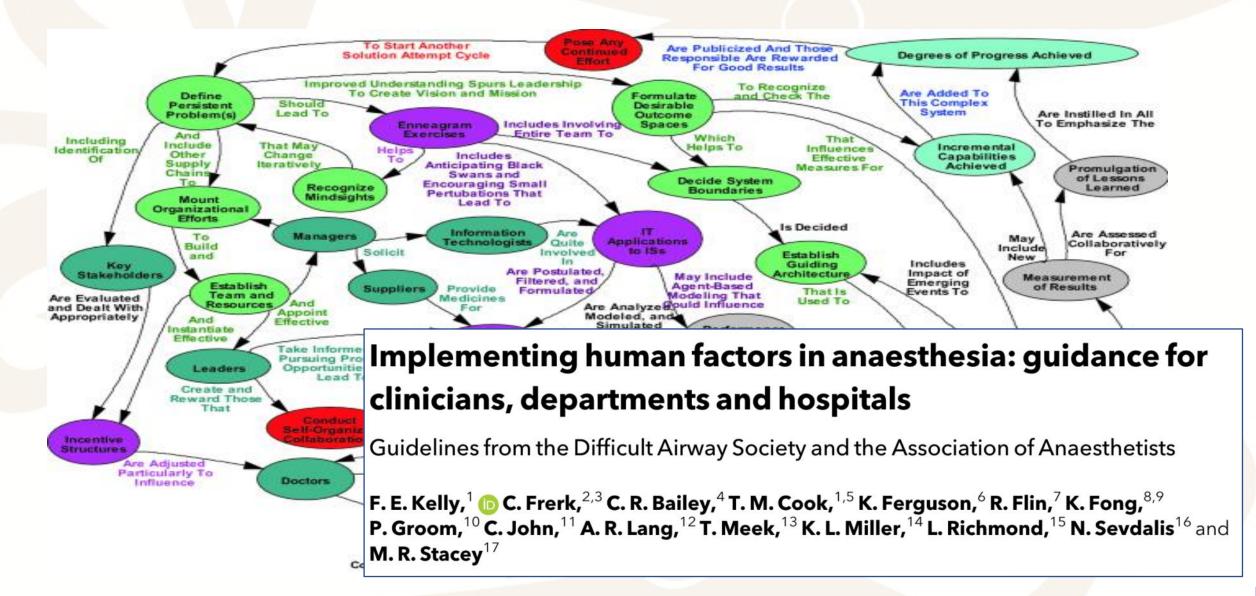
- Unfamiliar with advanced airway techniques
- Skill degradation

COGNITIVE BIASES

Anchoring: fixation or tunnel vision on an initial assessment or intervention and not adjusting to changes

Authority: tendency to concede to viewpoint of an authority figure

Omission: inaction from fear of being wrong or doing harm


Overconfidence:

overestimation of one's skills, or not recognizing the need for help

PROPOSED SOLUTIONS

- Anticipate difficult intubation
- Time out/Huddle
- Assign roles
- Set expectations for primary & backup plans
- Passive oxygenation
- Use advanced airway techniques early
- Spontaneous vs. controlled ventilation
- Do not wait for difficult airway to practice skills
- Use of cognitive aids
- Availability of experienced help

Complex Systems and Medicine

Take home messages

- Successful intubation is the result of multiple factors
- VL, O₂, "adequate" anaesthesia are fundamental on daily practice
- Be prepared to the extremes (CICO)
- Human factors can have a predominant influence (+/-)

.....and......

....aim for first attempt success!

